1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
//! Synchronization primitives for one-time evaluation.
use crate::{
atomic::{AtomicU8, Ordering},
RelaxStrategy, Spin,
};
use core::{cell::UnsafeCell, fmt, marker::PhantomData, mem::MaybeUninit};
/// A primitive that provides lazy one-time initialization.
///
/// Unlike its `std::sync` equivalent, this is generalized such that the closure returns a
/// value to be stored by the [`Once`] (`std::sync::Once` can be trivially emulated with
/// `Once`).
///
/// Because [`Once::new`] is `const`, this primitive may be used to safely initialize statics.
///
/// # Examples
///
/// ```
/// use spin;
///
/// static START: spin::Once = spin::Once::new();
///
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
pub struct Once<T = (), R = Spin> {
phantom: PhantomData<R>,
status: AtomicStatus,
data: UnsafeCell<MaybeUninit<T>>,
}
impl<T, R> Default for Once<T, R> {
fn default() -> Self {
Self::new()
}
}
impl<T: fmt::Debug, R> fmt::Debug for Once<T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.get() {
Some(s) => write!(f, "Once {{ data: ")
.and_then(|()| s.fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "Once {{ <uninitialized> }}"),
}
}
}
// Same unsafe impls as `std::sync::RwLock`, because this also allows for
// concurrent reads.
unsafe impl<T: Send + Sync, R> Sync for Once<T, R> {}
unsafe impl<T: Send, R> Send for Once<T, R> {}
mod status {
use super::*;
// SAFETY: This structure has an invariant, namely that the inner atomic u8 must *always* have
// a value for which there exists a valid Status. This means that users of this API must only
// be allowed to load and store `Status`es.
#[repr(transparent)]
pub struct AtomicStatus(AtomicU8);
// Four states that a Once can be in, encoded into the lower bits of `status` in
// the Once structure.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Status {
Incomplete = 0x00,
Running = 0x01,
Complete = 0x02,
Panicked = 0x03,
}
impl Status {
// Construct a status from an inner u8 integer.
//
// # Safety
//
// For this to be safe, the inner number must have a valid corresponding enum variant.
unsafe fn new_unchecked(inner: u8) -> Self {
core::mem::transmute(inner)
}
}
impl AtomicStatus {
#[inline(always)]
pub const fn new(status: Status) -> Self {
// SAFETY: We got the value directly from status, so transmuting back is fine.
Self(AtomicU8::new(status as u8))
}
#[inline(always)]
pub fn load(&self, ordering: Ordering) -> Status {
// SAFETY: We know that the inner integer must have been constructed from a Status in
// the first place.
unsafe { Status::new_unchecked(self.0.load(ordering)) }
}
#[inline(always)]
pub fn store(&self, status: Status, ordering: Ordering) {
// SAFETY: While not directly unsafe, this is safe because the value was retrieved from
// a status, thus making transmutation safe.
self.0.store(status as u8, ordering);
}
#[inline(always)]
pub fn compare_exchange(
&self,
old: Status,
new: Status,
success: Ordering,
failure: Ordering,
) -> Result<Status, Status> {
match self
.0
.compare_exchange(old as u8, new as u8, success, failure)
{
// SAFETY: A compare exchange will always return a value that was later stored into
// the atomic u8, but due to the invariant that it must be a valid Status, we know
// that both Ok(_) and Err(_) will be safely transmutable.
Ok(ok) => Ok(unsafe { Status::new_unchecked(ok) }),
Err(err) => Err(unsafe { Status::new_unchecked(err) }),
}
}
#[inline(always)]
pub fn get_mut(&mut self) -> &mut Status {
// SAFETY: Since we know that the u8 inside must be a valid Status, we can safely cast
// it to a &mut Status.
unsafe { &mut *((self.0.get_mut() as *mut u8).cast::<Status>()) }
}
}
}
use self::status::{AtomicStatus, Status};
use core::hint::unreachable_unchecked as unreachable;
impl<T, R: RelaxStrategy> Once<T, R> {
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it may not be the closure specified). The
/// returned pointer will point to the result from the closure that was
/// run.
///
/// # Panics
///
/// This function will panic if the [`Once`] previously panicked while attempting
/// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
/// primitives.
///
/// # Examples
///
/// ```
/// use spin;
///
/// static INIT: spin::Once<usize> = spin::Once::new();
///
/// fn get_cached_val() -> usize {
/// *INIT.call_once(expensive_computation)
/// }
///
/// fn expensive_computation() -> usize {
/// // ...
/// # 2
/// }
/// ```
pub fn call_once<F: FnOnce() -> T>(&self, f: F) -> &T {
match self.try_call_once(|| Ok::<T, core::convert::Infallible>(f())) {
Ok(x) => x,
Err(void) => match void {},
}
}
/// This method is similar to `call_once`, but allows the given closure to
/// fail, and lets the `Once` in a uninitialized state if it does.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns without error, it is guaranteed that some
/// initialization has run and completed (it may not be the closure
/// specified). The returned reference will point to the result from the
/// closure that was run.
///
/// # Panics
///
/// This function will panic if the [`Once`] previously panicked while attempting
/// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
/// primitives.
///
/// # Examples
///
/// ```
/// use spin;
///
/// static INIT: spin::Once<usize> = spin::Once::new();
///
/// fn get_cached_val() -> Result<usize, String> {
/// INIT.try_call_once(expensive_fallible_computation).map(|x| *x)
/// }
///
/// fn expensive_fallible_computation() -> Result<usize, String> {
/// // ...
/// # Ok(2)
/// }
/// ```
pub fn try_call_once<F: FnOnce() -> Result<T, E>, E>(&self, f: F) -> Result<&T, E> {
// SAFETY: We perform an Acquire load because if this were to return COMPLETE, then we need
// the preceding stores done while initializing, to become visible after this load.
let mut status = self.status.load(Ordering::Acquire);
if status == Status::Incomplete {
match self.status.compare_exchange(
Status::Incomplete,
Status::Running,
// SAFETY: Success ordering: We do not have to synchronize any data at all, as the
// value is at this point uninitialized, so Relaxed is technically sufficient. We
// will however have to do a Release store later. However, the success ordering
// must always be at least as strong as the failure ordering, so we choose Acquire
// here anyway.
Ordering::Acquire,
// SAFETY: Failure ordering: While we have already loaded the status initially, we
// know that if some other thread would have fully initialized this in between,
// then there will be new not-yet-synchronized accesses done during that
// initialization that would not have been synchronized by the earlier load. Thus
// we use Acquire to ensure when we later call force_get() in the last match
// statement, if the status was changed to COMPLETE, that those accesses will become
// visible to us.
Ordering::Acquire,
) {
Ok(_must_be_state_incomplete) => {
// The compare-exchange succeeded, so we shall initialize it.
// We use a guard (Finish) to catch panics caused by builder
let finish = Finish {
status: &self.status,
};
let val = match f() {
Ok(val) => val,
Err(err) => {
// If an error occurs, clean up everything and leave.
core::mem::forget(finish);
self.status.store(Status::Incomplete, Ordering::Release);
return Err(err);
}
};
unsafe {
// SAFETY:
// `UnsafeCell`/deref: currently the only accessor, mutably
// and immutably by cas exclusion.
// `write`: pointer comes from `MaybeUninit`.
(*self.data.get()).as_mut_ptr().write(val);
};
// If there were to be a panic with unwind enabled, the code would
// short-circuit and never reach the point where it writes the inner data.
// The destructor for Finish will run, and poison the Once to ensure that other
// threads accessing it do not exhibit unwanted behavior, if there were to be
// any inconsistency in data structures caused by the panicking thread.
//
// However, f() is expected in the general case not to panic. In that case, we
// simply forget the guard, bypassing its destructor. We could theoretically
// clear a flag instead, but this eliminates the call to the destructor at
// compile time, and unconditionally poisons during an eventual panic, if
// unwinding is enabled.
core::mem::forget(finish);
// SAFETY: Release is required here, so that all memory accesses done in the
// closure when initializing, become visible to other threads that perform Acquire
// loads.
//
// And, we also know that the changes this thread has done will not magically
// disappear from our cache, so it does not need to be AcqRel.
self.status.store(Status::Complete, Ordering::Release);
// This next line is mainly an optimization.
return unsafe { Ok(self.force_get()) };
}
// The compare-exchange failed, so we know for a fact that the status cannot be
// INCOMPLETE, or it would have succeeded.
Err(other_status) => status = other_status,
}
}
Ok(match status {
// SAFETY: We have either checked with an Acquire load, that the status is COMPLETE, or
// initialized it ourselves, in which case no additional synchronization is needed.
Status::Complete => unsafe { self.force_get() },
Status::Panicked => panic!("Once panicked"),
Status::Running => self.poll().unwrap_or_else(|| {
if cfg!(debug_assertions) {
unreachable!("Encountered INCOMPLETE when polling Once")
} else {
// SAFETY: This poll is guaranteed never to fail because the API of poll
// promises spinning if initialization is in progress. We've already
// checked that initialisation is in progress, and initialisation is
// monotonic: once done, it cannot be undone. We also fetched the status
// with Acquire semantics, thereby guaranteeing that the later-executed
// poll will also agree with us that initialization is in progress. Ergo,
// this poll cannot fail.
unsafe {
unreachable();
}
}
}),
// SAFETY: The only invariant possible in addition to the aforementioned ones at the
// moment, is INCOMPLETE. However, the only way for this match statement to be
// reached, is if we lost the CAS (otherwise we would have returned early), in
// which case we know for a fact that the state cannot be changed back to INCOMPLETE as
// `Once`s are monotonic.
Status::Incomplete => unsafe { unreachable() },
})
}
/// Spins until the [`Once`] contains a value.
///
/// Note that in releases prior to `0.7`, this function had the behaviour of [`Once::poll`].
///
/// # Panics
///
/// This function will panic if the [`Once`] previously panicked while attempting
/// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
/// primitives.
pub fn wait(&self) -> &T {
loop {
match self.poll() {
Some(x) => break x,
None => R::relax(),
}
}
}
/// Like [`Once::get`], but will spin if the [`Once`] is in the process of being
/// initialized. If initialization has not even begun, `None` will be returned.
///
/// Note that in releases prior to `0.7`, this function was named `wait`.
///
/// # Panics
///
/// This function will panic if the [`Once`] previously panicked while attempting
/// to initialize. This is similar to the poisoning behaviour of `std::sync`'s
/// primitives.
pub fn poll(&self) -> Option<&T> {
loop {
// SAFETY: Acquire is safe here, because if the status is COMPLETE, then we want to make
// sure that all memory accessed done while initializing that value, are visible when
// we return a reference to the inner data after this load.
match self.status.load(Ordering::Acquire) {
Status::Incomplete => return None,
Status::Running => R::relax(), // We spin
Status::Complete => return Some(unsafe { self.force_get() }),
Status::Panicked => panic!("Once previously poisoned by a panicked"),
}
}
}
}
impl<T, R> Once<T, R> {
/// Initialization constant of [`Once`].
#[allow(clippy::declare_interior_mutable_const)]
pub const INIT: Self = Self {
phantom: PhantomData,
status: AtomicStatus::new(Status::Incomplete),
data: UnsafeCell::new(MaybeUninit::uninit()),
};
/// Creates a new [`Once`].
pub const fn new() -> Self {
Self::INIT
}
/// Creates a new initialized [`Once`].
pub const fn initialized(data: T) -> Self {
Self {
phantom: PhantomData,
status: AtomicStatus::new(Status::Complete),
data: UnsafeCell::new(MaybeUninit::new(data)),
}
}
/// Retrieve a pointer to the inner data.
///
/// While this method itself is safe, accessing the pointer before the [`Once`] has been
/// initialized is UB, unless this method has already been written to from a pointer coming
/// from this method.
pub fn as_mut_ptr(&self) -> *mut T {
// SAFETY:
// * MaybeUninit<T> always has exactly the same layout as T
self.data.get().cast::<T>()
}
/// Get a reference to the initialized instance. Must only be called once COMPLETE.
unsafe fn force_get(&self) -> &T {
// SAFETY:
// * `UnsafeCell`/inner deref: data never changes again
// * `MaybeUninit`/outer deref: data was initialized
&*(*self.data.get()).as_ptr()
}
/// Get a reference to the initialized instance. Must only be called once COMPLETE.
unsafe fn force_get_mut(&mut self) -> &mut T {
// SAFETY:
// * `UnsafeCell`/inner deref: data never changes again
// * `MaybeUninit`/outer deref: data was initialized
&mut *(*self.data.get()).as_mut_ptr()
}
/// Get a reference to the initialized instance. Must only be called once COMPLETE.
unsafe fn force_into_inner(self) -> T {
// SAFETY:
// * `UnsafeCell`/inner deref: data never changes again
// * `MaybeUninit`/outer deref: data was initialized
(*self.data.get()).as_ptr().read()
}
/// Returns a reference to the inner value if the [`Once`] has been initialized.
pub fn get(&self) -> Option<&T> {
// SAFETY: Just as with `poll`, Acquire is safe here because we want to be able to see the
// nonatomic stores done when initializing, once we have loaded and checked the status.
match self.status.load(Ordering::Acquire) {
Status::Complete => Some(unsafe { self.force_get() }),
_ => None,
}
}
/// Returns a reference to the inner value on the unchecked assumption that the [`Once`] has been initialized.
///
/// # Safety
///
/// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
/// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused).
/// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically
/// checking initialization is unacceptable and the `Once` has already been initialized.
pub unsafe fn get_unchecked(&self) -> &T {
debug_assert_eq!(
self.status.load(Ordering::SeqCst),
Status::Complete,
"Attempted to access an uninitialized Once. If this was run without debug checks, this would be undefined behaviour. This is a serious bug and you must fix it.",
);
self.force_get()
}
/// Returns a mutable reference to the inner value if the [`Once`] has been initialized.
///
/// Because this method requires a mutable reference to the [`Once`], no synchronization
/// overhead is required to access the inner value. In effect, it is zero-cost.
pub fn get_mut(&mut self) -> Option<&mut T> {
match *self.status.get_mut() {
Status::Complete => Some(unsafe { self.force_get_mut() }),
_ => None,
}
}
/// Returns a mutable reference to the inner value
///
/// # Safety
///
/// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
/// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused).
/// However, this can be useful in some instances for exposing the `Once` to FFI or when the overhead of atomically
/// checking initialization is unacceptable and the `Once` has already been initialized.
pub unsafe fn get_mut_unchecked(&mut self) -> &mut T {
debug_assert_eq!(
self.status.load(Ordering::SeqCst),
Status::Complete,
"Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.",
);
self.force_get_mut()
}
/// Returns a the inner value if the [`Once`] has been initialized.
///
/// Because this method requires ownership of the [`Once`], no synchronization overhead
/// is required to access the inner value. In effect, it is zero-cost.
pub fn try_into_inner(mut self) -> Option<T> {
match *self.status.get_mut() {
Status::Complete => Some(unsafe { self.force_into_inner() }),
_ => None,
}
}
/// Returns a the inner value if the [`Once`] has been initialized.
/// # Safety
///
/// This is *extremely* unsafe if the `Once` has not already been initialized because a reference to uninitialized
/// memory will be returned, immediately triggering undefined behaviour (even if the reference goes unused)
/// This can be useful, if `Once` has already been initialized, and you want to bypass an
/// option check.
pub unsafe fn into_inner_unchecked(self) -> T {
debug_assert_eq!(
self.status.load(Ordering::SeqCst),
Status::Complete,
"Attempted to access an unintialized Once. If this was to run without debug checks, this would be undefined behavior. This is a serious bug and you must fix it.",
);
self.force_into_inner()
}
/// Checks whether the value has been initialized.
///
/// This is done using [`Acquire`](core::sync::atomic::Ordering::Acquire) ordering, and
/// therefore it is safe to access the value directly via
/// [`get_unchecked`](Self::get_unchecked) if this returns true.
pub fn is_completed(&self) -> bool {
// TODO: Add a similar variant for Relaxed?
self.status.load(Ordering::Acquire) == Status::Complete
}
}
impl<T, R> From<T> for Once<T, R> {
fn from(data: T) -> Self {
Self::initialized(data)
}
}
impl<T, R> Drop for Once<T, R> {
fn drop(&mut self) {
// No need to do any atomic access here, we have &mut!
if *self.status.get_mut() == Status::Complete {
unsafe {
//TODO: Use MaybeUninit::assume_init_drop once stabilised
core::ptr::drop_in_place((*self.data.get()).as_mut_ptr());
}
}
}
}
struct Finish<'a> {
status: &'a AtomicStatus,
}
impl<'a> Drop for Finish<'a> {
fn drop(&mut self) {
// While using Relaxed here would most likely not be an issue, we use SeqCst anyway.
// This is mainly because panics are not meant to be fast at all, but also because if
// there were to be a compiler bug which reorders accesses within the same thread,
// where it should not, we want to be sure that the panic really is handled, and does
// not cause additional problems. SeqCst will therefore help guarding against such
// bugs.
self.status.store(Status::Panicked, Ordering::SeqCst);
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::mpsc::channel;
use std::thread;
use super::*;
#[test]
fn smoke_once() {
static O: Once = Once::new();
let mut a = 0;
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
#[test]
fn smoke_once_value() {
static O: Once<usize> = Once::new();
let a = O.call_once(|| 1);
assert_eq!(*a, 1);
let b = O.call_once(|| 2);
assert_eq!(*b, 1);
}
#[test]
fn stampede_once() {
static O: Once = Once::new();
static mut RUN: bool = false;
let (tx, rx) = channel();
let mut ts = Vec::new();
for _ in 0..10 {
let tx = tx.clone();
ts.push(thread::spawn(move || {
for _ in 0..4 {
thread::yield_now()
}
unsafe {
O.call_once(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
tx.send(()).unwrap();
}));
}
unsafe {
O.call_once(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
for _ in 0..10 {
rx.recv().unwrap();
}
for t in ts {
t.join().unwrap();
}
}
#[test]
fn get() {
static INIT: Once<usize> = Once::new();
assert!(INIT.get().is_none());
INIT.call_once(|| 2);
assert_eq!(INIT.get().map(|r| *r), Some(2));
}
#[test]
fn get_no_wait() {
static INIT: Once<usize> = Once::new();
assert!(INIT.get().is_none());
let t = thread::spawn(move || {
INIT.call_once(|| {
thread::sleep(std::time::Duration::from_secs(3));
42
});
});
assert!(INIT.get().is_none());
t.join().unwrap();
}
#[test]
fn poll() {
static INIT: Once<usize> = Once::new();
assert!(INIT.poll().is_none());
INIT.call_once(|| 3);
assert_eq!(INIT.poll().map(|r| *r), Some(3));
}
#[test]
fn wait() {
static INIT: Once<usize> = Once::new();
let t = std::thread::spawn(|| {
assert_eq!(*INIT.wait(), 3);
assert!(INIT.is_completed());
});
for _ in 0..4 {
thread::yield_now()
}
assert!(INIT.poll().is_none());
INIT.call_once(|| 3);
t.join().unwrap();
}
#[test]
fn panic() {
use std::panic;
static INIT: Once = Once::new();
// poison the once
let t = panic::catch_unwind(|| {
INIT.call_once(|| panic!());
});
assert!(t.is_err());
// poisoning propagates
let t = panic::catch_unwind(|| {
INIT.call_once(|| {});
});
assert!(t.is_err());
}
#[test]
fn init_constant() {
static O: Once = Once::INIT;
let mut a = 0;
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
static mut CALLED: bool = false;
struct DropTest {}
impl Drop for DropTest {
fn drop(&mut self) {
unsafe {
CALLED = true;
}
}
}
// This is sort of two test cases, but if we write them as separate test methods
// they can be executed concurrently and then fail some small fraction of the
// time.
#[test]
fn drop_occurs_and_skip_uninit_drop() {
unsafe {
CALLED = false;
}
{
let once = Once::<_>::new();
once.call_once(|| DropTest {});
}
assert!(unsafe { CALLED });
// Now test that we skip drops for the uninitialized case.
unsafe {
CALLED = false;
}
let once = Once::<DropTest>::new();
drop(once);
assert!(unsafe { !CALLED });
}
#[test]
fn call_once_test() {
for _ in 0..20 {
use std::sync::atomic::AtomicUsize;
use std::sync::Arc;
use std::time::Duration;
let share = Arc::new(AtomicUsize::new(0));
let once = Arc::new(Once::<_, Spin>::new());
let mut hs = Vec::new();
for _ in 0..8 {
let h = thread::spawn({
let share = share.clone();
let once = once.clone();
move || {
thread::sleep(Duration::from_millis(10));
once.call_once(|| {
share.fetch_add(1, Ordering::SeqCst);
});
}
});
hs.push(h);
}
for h in hs {
h.join().unwrap();
}
assert_eq!(1, share.load(Ordering::SeqCst));
}
}
}