1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Take a look at the license at the top of the repository in the LICENSE file.

//! # GTK 4 Macros
//!
//! The crate aims to provide useful macros to use with the GTK 4 Rust bindings.

mod attribute_parser;
mod composite_template_derive;
mod template_callbacks_attribute;
mod util;

use proc_macro::TokenStream;
use proc_macro_error::proc_macro_error;
use syn::{parse_macro_input, DeriveInput};

/// Derive macro for using a composite template in a widget.
///
/// The `template` attribute specifies where the template should be loaded
/// from;  it can be a `file`, a `resource`, or a `string`.
///
/// The `template_child` attribute is used to mark all internal widgets
/// we need to have programmatic access to. It can take two parameters:
/// - `id` which defaults to the item name if not defined
/// - `internal_child` whether the child should be accessible as an “internal-child”, defaults to `false`
///
/// # Example
///
/// Specify that `MyWidget` is using a composite template and load the
/// template file the `composite_template.ui` file.
///
/// Then, in the [`ObjectSubclass`] implementation you will need to call
/// [`bind_template`] in the [`class_init`] function, and [`init_template`] in
/// [`instance_init`] function.
///
/// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html
/// [`bind_template`]: ../gtk4/subclass/widget/trait.CompositeTemplate.html#tymethod.bind_template
/// [`class_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.class_init
/// [`init_template`]: ../gtk4/prelude/trait.InitializingWidgetExt.html#tymethod.init_template
/// [`instance_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.instance_init
///
/// ```no_run
/// # fn main() {}
/// use gtk::prelude::*;
/// use gtk::glib;
/// use gtk::CompositeTemplate;
/// use gtk::subclass::prelude::*;
///
/// mod imp {
///     use super::*;
///
///     #[derive(Debug, Default, CompositeTemplate)]
///     #[template(file = "test/template.ui")]
///     pub struct MyWidget {
///         #[template_child]
///         pub label: TemplateChild<gtk::Label>,
///         #[template_child(id = "my_button_id")]
///         pub button: TemplateChild<gtk::Button>,
///     }
///
///     #[glib::object_subclass]
///     impl ObjectSubclass for MyWidget {
///         const NAME: &'static str = "MyWidget";
///         type Type = super::MyWidget;
///         type ParentType = gtk::Box;
///
///         fn class_init(klass: &mut Self::Class) {
///             klass.bind_template();
///         }
///
///         fn instance_init(obj: &glib::subclass::InitializingObject<Self>) {
///             obj.init_template();
///         }
///     }
///
///     impl ObjectImpl for MyWidget {}
///     impl WidgetImpl for MyWidget {}
///     impl BoxImpl for MyWidget {}
/// }
///
/// glib::wrapper! {
///     pub struct MyWidget(ObjectSubclass<imp::MyWidget>) @extends gtk::Widget, gtk::Box;
/// }
///
/// impl MyWidget {
///     pub fn new() -> Self {
///         glib::Object::new(&[])
///     }
/// }
/// ```
#[proc_macro_derive(CompositeTemplate, attributes(template, template_child))]
#[proc_macro_error]
pub fn composite_template_derive(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    let gen = composite_template_derive::impl_composite_template(&input);
    gen.into()
}

/// Attribute macro for creating template callbacks from Rust methods.
///
/// Widgets with [`CompositeTemplate`] can then make use of these callbacks from within their
/// template XML definition. The attribute must be applied to an `impl` statement of a struct.
/// Functions marked as callbacks within the `impl` will be stored in a static array. Then, in the
/// [`ObjectSubclass`] implementation you will need to call [`bind_template_callbacks`] and/or
/// [`bind_template_instance_callbacks`] in the [`class_init`] function.
///
/// Template callbacks can be specified on both a widget's public wrapper `impl` or on its private
/// subclass `impl`, or from external types. If callbacks are specified on the public wrapper, then
/// `bind_template_instance_callbacks` must be called in `class_init`. If callbacks are specified
/// on the private subclass, then `bind_template_callbacks` must be called in `class_init`. To use
/// the callbacks from an external type, call [`T::bind_template_callbacks`] in `class_init`, where
/// `T` is the other type. See the example below for usage of all three.
///
/// These callbacks can be bound using the `<signal>` or `<closure>` tags in the template file.
/// Note that the arguments and return type will only be checked at run time when the method is
/// invoked.
///
/// Template callbacks can optionally take `self` or `&self` as a first parameter. In this case,
/// the attribute `swapped="true"` will usually have to be set on the `<signal>` or `<closure>` tag
/// in order to invoke the function correctly. Note that by-value `self` will only work with
/// template callbacks on the wrapper type.
///
/// Template callbacks that have no return value can also be `async`, in which case the callback
/// will be spawned as new future on the default main context using
/// [`glib::MainContext::spawn_local`]. Invoking the callback multiple times will spawn an
/// additional future each time it is invoked. This means that multiple futures for an async
/// callback can be active at any given time, so care must be taken to avoid any kind of data
/// races. Async callbacks may prefer communicating back to the caller or widget over channels
/// instead of mutating internal widget state, or may want to make use of a locking flag to ensure
/// only one future can be active at once. Widgets may also want to show a visual indicator such as
/// a [`Spinner`] while the future is active to communicate to the user that a background task is
/// running.
///
/// The following options are supported on the attribute:
/// - `functions` makes all callbacks use the `function` attribute by default. (see below)
///
/// The `template_callback` attribute is used to mark methods that will be exposed to the template
/// scope. It can take the following options:
/// - `name` renames the callback. Defaults to the function name if not defined.
/// - `function` ignores the first value when calling the callback and disallows `self`.  Useful
/// for callbacks called from `<closure>` tags.
/// - `function = false` reverts the effects of `functions` used on the `impl`, so the callback
/// gets the first value and can take `self` again. Mainly useful for callbacks that are invoked
/// with `swapped="true"`.
///
/// The `rest` attribute can be placed on the last argument of a template callback. This attribute
/// must be used on an argument of type `&[glib::Value]` and will pass in the remaining arguments.
/// The first and last values will be omitted from the slice if this callback is a `function`.
///
/// Arguments and return types in template callbacks have some special restrictions, similar to the
/// restrictions on [`glib::closure`]. Each argument's type must implement [`glib::ToValue`]. The
/// last argument can also be `&[glib::Value]` annotated with `#[rest]` as described above. The
/// return type of a callback, if present, must implement [`glib::FromValue`]. Type-checking of
/// inputs and outputs is done at run-time; if the argument types or return type do not match the
/// type of the signal or closure then the callback will panic. To implement your own type checking
/// or to use dynamic typing, an argument's type can be left as a [`&glib::Value`].
/// This can also be used if you need custom unboxing, such as if the target type does not
/// implement `FromValue`.
///
/// [`glib::closure`]: ../glib/macro.closure.html
/// [`glib::wrapper`]: ../glib/macro.wrapper.html
/// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html
/// [`class_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.class_init
/// [`bind_template_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateCallbacksClass.html#tymethod.bind_template_callbacks
/// [`bind_template_instance_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateInstanceCallbacksClass.html#tymethod.bind_template_instance_callbacks
/// [`T::bind_template_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateCallbacks.html#method.bind_template_callbacks
/// [`glib::FromValue`]: ../glib/value/trait.FromValue.html
/// [`glib::ToValue`]: ../glib/value/trait.ToValue.html
/// [`&glib::Value`]: ../glib/value/struct.Value.html
/// [`glib::MainContext::spawn_local`]: ../glib/struct.MainContext.html#method.spawn_local
/// [`Spinner`]: ../gtk4/struct.Spinner.html
///
/// # Example
///
/// ```no_run
/// # fn main() {}
/// use gtk::prelude::*;
/// use gtk::glib;
/// use gtk::CompositeTemplate;
/// use gtk::subclass::prelude::*;
///
/// mod imp {
///     use super::*;
///
///     #[derive(Debug, Default, CompositeTemplate)]
///     #[template(file = "test/template_callbacks.ui")]
///     pub struct MyWidget {
///         #[template_child]
///         pub label: TemplateChild<gtk::Label>,
///         #[template_child(id = "my_button_id")]
///         pub button: TemplateChild<gtk::Button>,
///     }
///
///     #[glib::object_subclass]
///     impl ObjectSubclass for MyWidget {
///         const NAME: &'static str = "MyWidget";
///         type Type = super::MyWidget;
///         type ParentType = gtk::Box;
///
///         fn class_init(klass: &mut Self::Class) {
///             klass.bind_template();
///             // Bind the private callbacks
///             klass.bind_template_callbacks();
///             // Bind the public callbacks
///             klass.bind_template_instance_callbacks();
///             // Bind callbacks from another struct
///             super::Utility::bind_template_callbacks(klass);
///         }
///
///         fn instance_init(obj: &glib::subclass::InitializingObject<Self>) {
///             obj.init_template();
///         }
///     }
///
///     #[gtk::template_callbacks]
///     impl MyWidget {
///         #[template_callback]
///         fn button_clicked(&self, button: &gtk::Button) {
///             button.set_label("I was clicked!");
///             self.label.set_label("The button was clicked!");
///         }
///         #[template_callback(function, name = "strlen")]
///         fn string_length(s: &str) -> u64 {
///             s.len() as u64
///         }
///     }
///
///     impl ObjectImpl for MyWidget {}
///     impl WidgetImpl for MyWidget {}
///     impl BoxImpl for MyWidget {}
/// }
///
/// glib::wrapper! {
///     pub struct MyWidget(ObjectSubclass<imp::MyWidget>) @extends gtk::Widget, gtk::Box;
/// }
///
/// #[gtk::template_callbacks]
/// impl MyWidget {
///     pub fn new() -> Self {
///         glib::Object::new(&[])
///     }
///     #[template_callback]
///     pub fn print_both_labels(&self) {
///         let imp = self.imp();
///         println!("{} {}", imp.label.label(), imp.button.label().unwrap().as_str());
///     }
/// }
///
/// pub struct Utility {}
///
/// #[gtk::template_callbacks(functions)]
/// impl Utility {
///     #[template_callback]
///     fn concat_strs(#[rest] values: &[glib::Value]) -> String {
///         let mut res = String::new();
///         for (index, value) in values.iter().enumerate() {
///             res.push_str(value.get::<&str>().unwrap_or_else(|e| {
///                 panic!("Expected string value for argument {}: {}", index, e);
///             }));
///         }
///         res
///     }
///     #[template_callback(function = false)]
///     fn reset_label(label: &gtk::Label) {
///         label.set_label("");
///     }
/// }
/// ```
#[proc_macro_attribute]
#[proc_macro_error]
pub fn template_callbacks(attr: TokenStream, item: TokenStream) -> TokenStream {
    use proc_macro_error::abort_call_site;
    let args = parse_macro_input!(attr as template_callbacks_attribute::Args);
    match syn::parse::<syn::ItemImpl>(item) {
        Ok(input) => template_callbacks_attribute::impl_template_callbacks(input, args).into(),
        Err(_) => abort_call_site!(template_callbacks_attribute::WRONG_PLACE_MSG),
    }
}

/// Attribute macro for declaring GTK tests.
///
/// Wraps the standard Rust [`test`] attribute with setup logic for GTK. All tests that call
/// into GTK must use this attribute. This attribute can also be used on asynchronous functions;
/// the asynchronous test will be run on the main thread context.
///
/// # Technical Details
///
/// GTK is a single-threaded library, so Rust's normal multi-threaded test behavior cannot be used.
/// The `#[gtk::test]` attribute creates a main thread for GTK and runs all tests on that thread.
/// This has the side effect of making all tests run serially, not in parallel.
///
/// [`test`]: <https://doc.rust-lang.org/std/prelude/v1/macro.test.html>
///
/// # Example
///
/// ```no_run
/// use gtk::prelude::*;
///
/// #[gtk::test]
/// fn test_button() {
///     let button = gtk::Button::new();
///     button.activate();
/// }
/// ```
#[proc_macro_attribute]
#[proc_macro_error]
pub fn test(_attr: TokenStream, item: TokenStream) -> TokenStream {
    use proc_macro_error::abort_call_site;
    use quote::quote;

    match syn::parse::<syn::ItemFn>(item) {
        Ok(mut input) => {
            let crate_ident = util::crate_ident_new();
            let block = &input.block;
            let block = if input.sig.asyncness.is_some() {
                quote! {
                    #crate_ident::glib::MainContext::default().block_on(async move {
                        #block
                    })
                }
            } else {
                quote! { #block }
            };
            input.sig.asyncness.take();

            let attrs = &input.attrs;
            let vis = &input.vis;
            let sig = &input.sig;
            let test = quote! {
                #(#attrs)*
                #[::std::prelude::v1::test]
                #vis #sig {
                    #crate_ident::test_synced(move || {
                        #block
                    })
                }
            };
            test.into()
        }
        Err(_) => abort_call_site!("This macro should be used on a function definition"),
    }
}