pub struct SpinMutex<T: ?Sized, R = Spin> { /* private fields */ }
Expand description
A spin lock providing mutually exclusive access to data.
Example
use spin;
let lock = spin::mutex::SpinMutex::<_>::new(0);
// Modify the data
*lock.lock() = 2;
// Read the data
let answer = *lock.lock();
assert_eq!(answer, 2);
Thread safety example
use spin;
use std::sync::{Arc, Barrier};
let thread_count = 1000;
let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0));
// We use a barrier to ensure the readout happens after all writing
let barrier = Arc::new(Barrier::new(thread_count + 1));
for _ in (0..thread_count) {
let my_barrier = barrier.clone();
let my_lock = spin_mutex.clone();
std::thread::spawn(move || {
let mut guard = my_lock.lock();
*guard += 1;
// Release the lock to prevent a deadlock
drop(guard);
my_barrier.wait();
});
}
barrier.wait();
let answer = { *spin_mutex.lock() };
assert_eq!(answer, thread_count);
Implementations§
source§impl<T, R> SpinMutex<T, R>
impl<T, R> SpinMutex<T, R>
sourcepub fn into_inner(self) -> T
pub fn into_inner(self) -> T
sourcepub fn as_mut_ptr(&self) -> *mut T
pub fn as_mut_ptr(&self) -> *mut T
Returns a mutable pointer to the underlying data.
This is mostly meant to be used for applications which require manual unlocking, but where storing both the lock and the pointer to the inner data gets inefficient.
Example
let lock = spin::mutex::SpinMutex::<_>::new(42);
unsafe {
core::mem::forget(lock.lock());
assert_eq!(lock.as_mut_ptr().read(), 42);
lock.as_mut_ptr().write(58);
lock.force_unlock();
}
assert_eq!(*lock.lock(), 58);
source§impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R>
impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R>
sourcepub fn lock(&self) -> SpinMutexGuard<'_, T>
pub fn lock(&self) -> SpinMutexGuard<'_, T>
Locks the SpinMutex
and returns a guard that permits access to the inner data.
The returned value may be dereferenced for data access and the lock will be dropped when the guard falls out of scope.
let lock = spin::mutex::SpinMutex::<_>::new(0);
{
let mut data = lock.lock();
// The lock is now locked and the data can be accessed
*data += 1;
// The lock is implicitly dropped at the end of the scope
}
source§impl<T: ?Sized, R> SpinMutex<T, R>
impl<T: ?Sized, R> SpinMutex<T, R>
sourcepub fn is_locked(&self) -> bool
pub fn is_locked(&self) -> bool
Returns true
if the lock is currently held.
Safety
This function provides no synchronization guarantees and so its result should be considered ‘out of date’ the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
sourcepub unsafe fn force_unlock(&self)
pub unsafe fn force_unlock(&self)
sourcepub fn try_lock(&self) -> Option<SpinMutexGuard<'_, T>>
pub fn try_lock(&self) -> Option<SpinMutexGuard<'_, T>>
Try to lock this SpinMutex
, returning a lock guard if successful.
Example
let lock = spin::mutex::SpinMutex::<_>::new(42);
let maybe_guard = lock.try_lock();
assert!(maybe_guard.is_some());
// `maybe_guard` is still held, so the second call fails
let maybe_guard2 = lock.try_lock();
assert!(maybe_guard2.is_none());
sourcepub fn get_mut(&mut self) -> &mut T
pub fn get_mut(&mut self) -> &mut T
Returns a mutable reference to the underlying data.
Since this call borrows the SpinMutex
mutably, and a mutable reference is guaranteed to be exclusive in
Rust, no actual locking needs to take place – the mutable borrow statically guarantees no locks exist. As
such, this is a ‘zero-cost’ operation.
Example
let mut lock = spin::mutex::SpinMutex::<_>::new(0);
*lock.get_mut() = 10;
assert_eq!(*lock.lock(), 10);
Trait Implementations§
source§impl<R: RelaxStrategy> RawMutex for SpinMutex<(), R>
impl<R: RelaxStrategy> RawMutex for SpinMutex<(), R>
§type GuardMarker = GuardSend
type GuardMarker = GuardSend
Send
. Use
one of the GuardSend
or GuardNoSend
helper types here.