pub struct BigNum(_);
Expand description
Dynamically sized large number implementation
Perform large number mathematics. Create a new BigNum
with new
. Perform standard mathematics on large numbers using
methods from Dref<Target = BigNumRef>
OpenSSL documentation at BN_new
.
Examples
use openssl::bn::BigNum;
let little_big = BigNum::from_u32(std::u32::MAX)?;
assert_eq!(*&little_big.num_bytes(), 4);
Implementations§
source§impl BigNum
impl BigNum
sourcepub fn new() -> Result<BigNum, ErrorStack>
pub fn new() -> Result<BigNum, ErrorStack>
Creates a new BigNum
with the value 0.
This corresponds to BN_new
.
sourcepub fn new_secure() -> Result<BigNum, ErrorStack>
pub fn new_secure() -> Result<BigNum, ErrorStack>
Returns a new secure BigNum
.
This corresponds to BN_secure_new
.
sourcepub fn from_u32(n: u32) -> Result<BigNum, ErrorStack>
pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack>
Creates a new BigNum
with the given value.
This corresponds to BN_set_word
.
sourcepub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack>
pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack>
Creates a BigNum
from a decimal string.
This corresponds to BN_dec2bn
.
sourcepub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack>
pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack>
Creates a BigNum
from a hexadecimal string.
This corresponds to BN_hex2bn
.
sourcepub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack>
pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 768
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1.
This corresponds to BN_get_rfc2409_prime_768
.
sourcepub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack>
pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 2409
. This prime number is in
the order of magnitude of 2 ^ 1024
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled Oakly group 2.
This corresponds to BN_get_rfc2409_prime_1024
.
sourcepub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 1536
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 5.
This corresponds to BN_get_rfc3526_prime_1536
.
sourcepub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 2048
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 14.
This corresponds to BN_get_rfc3526_prime_2048
.
sourcepub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 3072
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 15.
This corresponds to BN_get_rfc3526_prime_3072
.
sourcepub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 4096
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 16.
This corresponds to BN_get_rfc3526_prime_4096
.
sourcepub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 6144
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 17.
This corresponds to BN_get_rfc3526_prime_6114
.
sourcepub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack>
pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack>
Returns a constant used in IKE as defined in RFC 3526
. The prime is in the order
of magnitude of 2 ^ 8192
. This number is used during calculated key
exchanges such as Diffie-Hellman. This number is labeled MODP group 18.
This corresponds to BN_get_rfc3526_prime_8192
.
sourcepub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack>
pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack>
sourcepub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack>
pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack>
Copies data from a slice overwriting what was in the BigNum.
This function can be used to copy data from a slice to a secure BigNum.
Examples
let mut bignum = BigNum::new().unwrap();
bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap();
assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
This corresponds to BN_bin2bn
.
Methods from Deref<Target = BigNumRef>§
sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Erases the memory used by this BigNum
, resetting its value to 0.
This can be used to destroy sensitive data such as keys when they are no longer needed.
This corresponds to BN_clear
.
sourcepub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack>
pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack>
Adds a u32
to self
.
This corresponds to BN_add_word
.
sourcepub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack>
pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack>
Subtracts a u32
from self
.
This corresponds to BN_sub_word
.
sourcepub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack>
pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack>
Multiplies a u32
by self
.
This corresponds to BN_mul_word
.
sourcepub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack>
pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack>
Divides self
by a u32
, returning the remainder.
This corresponds to BN_div_word
.
sourcepub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack>
pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack>
Returns the result of self
modulo w
.
This corresponds to BN_mod_word
.
sourcepub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
Places a cryptographically-secure pseudo-random nonnegative
number less than self
in rnd
.
This corresponds to BN_rand_range
.
sourcepub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack>
The cryptographically weak counterpart to rand_in_range
.
This corresponds to BN_pseudo_rand_range
.
sourcepub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack>
pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack>
Sets bit n
. Equivalent to self |= (1 << n)
.
When setting a bit outside of self
, it is expanded.
This corresponds to BN_set_bit
.
sourcepub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack>
pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack>
Clears bit n
, setting it to 0. Equivalent to self &= ~(1 << n)
.
When clearing a bit outside of self
, an error is returned.
This corresponds to BN_clear_bit
.
sourcepub fn is_bit_set(&self, n: i32) -> bool
pub fn is_bit_set(&self, n: i32) -> bool
Returns true
if the n
th bit of self
is set to 1, false
otherwise.
This corresponds to BN_is_bit_set
.
sourcepub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack>
pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack>
Truncates self
to the lowest n
bits.
An error occurs if self
is already shorter than n
bits.
This corresponds to BN_mask_bits
.
sourcepub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
Places a << 1
in self
. Equivalent to self * 2
.
This corresponds to BN_lshift1
.
sourcepub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack>
Places a >> 1
in self
. Equivalent to self / 2
.
This corresponds to BN_rshift1
.
sourcepub fn checked_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
pub fn checked_add( &mut self, a: &BigNumRef, b: &BigNumRef ) -> Result<(), ErrorStack>
Places a + b
in self
. core::ops::Add
is also implemented for BigNumRef
.
This corresponds to BN_add
.
sourcepub fn checked_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef
) -> Result<(), ErrorStack>
pub fn checked_sub( &mut self, a: &BigNumRef, b: &BigNumRef ) -> Result<(), ErrorStack>
Places a - b
in self
. core::ops::Sub
is also implemented for BigNumRef
.
This corresponds to BN_sub
.
sourcepub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
Places a << n
in self
. Equivalent to a * 2 ^ n
.
This corresponds to BN_lshift
.
sourcepub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack>
Places a >> n
in self
. Equivalent to a / 2 ^ n
.
This corresponds to BN_rshift
.
sourcepub fn to_owned(&self) -> Result<BigNum, ErrorStack>
pub fn to_owned(&self) -> Result<BigNum, ErrorStack>
Creates a new BigNum with the same value.
This corresponds to BN_dup
.
sourcepub fn set_negative(&mut self, negative: bool)
pub fn set_negative(&mut self, negative: bool)
Sets the sign of self
. Pass true to set self
to a negative. False sets
self
positive.
This corresponds to BN_set_negative
.
sourcepub fn is_negative(&self) -> bool
pub fn is_negative(&self) -> bool
Returns true
if self
is negative.
This corresponds to BN_is_negative
.
sourcepub fn num_bits(&self) -> i32
pub fn num_bits(&self) -> i32
Returns the number of significant bits in self
.
This corresponds to BN_num_bits
.
sourcepub fn rand(
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
pub fn rand( &mut self, bits: i32, msb: MsbOption, odd: bool ) -> Result<(), ErrorStack>
Generates a cryptographically strong pseudo-random BigNum
, placing it in self
.
Parameters
bits
: Length of the number in bits.msb
: The desired properties of the most significant bit. Seeconstants
.odd
: Iftrue
, the generated number will be odd.
Examples
use openssl::bn::{BigNum, MsbOption};
use openssl::error::ErrorStack;
fn generate_random() -> Result< BigNum, ErrorStack > {
let mut big = BigNum::new()?;
// Generates a 128-bit odd random number
big.rand(128, MsbOption::MAYBE_ZERO, true);
Ok((big))
}
This corresponds to BN_rand
.
sourcepub fn pseudo_rand(
&mut self,
bits: i32,
msb: MsbOption,
odd: bool
) -> Result<(), ErrorStack>
pub fn pseudo_rand( &mut self, bits: i32, msb: MsbOption, odd: bool ) -> Result<(), ErrorStack>
The cryptographically weak counterpart to rand
. Not suitable for key generation.
This corresponds to BN_pseudo_rand
.
sourcepub fn generate_prime(
&mut self,
bits: i32,
safe: bool,
add: Option<&BigNumRef>,
rem: Option<&BigNumRef>
) -> Result<(), ErrorStack>
pub fn generate_prime( &mut self, bits: i32, safe: bool, add: Option<&BigNumRef>, rem: Option<&BigNumRef> ) -> Result<(), ErrorStack>
Generates a prime number, placing it in self
.
Parameters
bits
: The length of the prime in bits (lower bound).safe
: If true, returns a “safe” primep
so that(p-1)/2
is also prime.add
/rem
: Ifadd
is set toSome(add)
,p % add == rem
will hold, wherep
is the generated prime andrem
is1
if not specified (None
).
Examples
use openssl::bn::BigNum;
use openssl::error::ErrorStack;
fn generate_weak_prime() -> Result< BigNum, ErrorStack > {
let mut big = BigNum::new()?;
// Generates a 128-bit simple prime number
big.generate_prime(128, false, None, None);
Ok((big))
}
This corresponds to BN_generate_prime_ex
.
sourcepub fn checked_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_mul( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a * b
in self
.
core::ops::Mul
is also implemented for BigNumRef
.
This corresponds to BN_mul
.
sourcepub fn checked_div(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_div( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a / b
in self
. The remainder is discarded.
core::ops::Div
is also implemented for BigNumRef
.
This corresponds to BN_div
.
sourcepub fn checked_rem(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn checked_rem( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a % b
in self
.
This corresponds to BN_div
.
sourcepub fn div_rem(
&mut self,
rem: &mut BigNumRef,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn div_rem( &mut self, rem: &mut BigNumRef, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a / b
in self
and a % b
in rem
.
This corresponds to BN_div
.
sourcepub fn sqr(
&mut self,
a: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn sqr( &mut self, a: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a²
in self
.
This corresponds to BN_sqr
.
sourcepub fn nnmod(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn nnmod( &mut self, a: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a mod m
in self
. As opposed to div_rem
the result is non-negative.
This corresponds to BN_nnmod
.
sourcepub fn mod_add(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_add( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of (a + b) mod m
in self
.
This corresponds to BN_mod_add
.
sourcepub fn mod_sub(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_sub( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of (a - b) mod m
in self
.
This corresponds to BN_mod_sub
.
sourcepub fn mod_mul(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_mul( &mut self, a: &BigNumRef, b: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of (a * b) mod m
in self
.
This corresponds to BN_mod_mul
.
sourcepub fn mod_sqr(
&mut self,
a: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_sqr( &mut self, a: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a² mod m
in self
.
This corresponds to BN_mod_sqr
.
sourcepub fn exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn exp( &mut self, a: &BigNumRef, p: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a^p
in self
.
This corresponds to BN_exp
.
sourcepub fn mod_exp(
&mut self,
a: &BigNumRef,
p: &BigNumRef,
m: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_exp( &mut self, a: &BigNumRef, p: &BigNumRef, m: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the result of a^p mod m
in self
.
This corresponds to BN_mod_exp
.
sourcepub fn mod_inverse(
&mut self,
a: &BigNumRef,
n: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn mod_inverse( &mut self, a: &BigNumRef, n: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the inverse of a
modulo n
in self
.
This corresponds to BN_mod_inverse
.
sourcepub fn gcd(
&mut self,
a: &BigNumRef,
b: &BigNumRef,
ctx: &mut BigNumContextRef
) -> Result<(), ErrorStack>
pub fn gcd( &mut self, a: &BigNumRef, b: &BigNumRef, ctx: &mut BigNumContextRef ) -> Result<(), ErrorStack>
Places the greatest common denominator of a
and b
in self
.
This corresponds to BN_gcd
.
sourcepub fn is_prime(
&self,
checks: i32,
ctx: &mut BigNumContextRef
) -> Result<bool, ErrorStack>
pub fn is_prime( &self, checks: i32, ctx: &mut BigNumContextRef ) -> Result<bool, ErrorStack>
Checks whether self
is prime.
Performs a Miller-Rabin probabilistic primality test with checks
iterations.
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
This corresponds to BN_is_prime_ex
.
sourcepub fn is_prime_fasttest(
&self,
checks: i32,
ctx: &mut BigNumContextRef,
do_trial_division: bool
) -> Result<bool, ErrorStack>
pub fn is_prime_fasttest( &self, checks: i32, ctx: &mut BigNumContextRef, do_trial_division: bool ) -> Result<bool, ErrorStack>
Checks whether self
is prime with optional trial division.
If do_trial_division
is true
, first performs trial division by a number of small primes.
Then, like is_prime
, performs a Miller-Rabin probabilistic primality test with checks
iterations.
Return Value
Returns true
if self
is prime with an error probability of less than 0.25 ^ checks
.
This corresponds to BN_is_prime_fasttest_ex
.
sourcepub fn to_vec(&self) -> Vec<u8>
pub fn to_vec(&self) -> Vec<u8>
Returns a big-endian byte vector representation of the absolute value of self
.
self
can be recreated by using from_slice
.
let s = -BigNum::from_u32(4543).unwrap();
let r = BigNum::from_u32(4543).unwrap();
let s_vec = s.to_vec();
assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
This corresponds to BN_bn2bin
.
sourcepub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack>
pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack>
Returns a big-endian byte vector representation of the absolute value of self
padded
to pad_to
bytes.
If pad_to
is less than self.num_bytes()
then an error is returned.
self
can be recreated by using from_slice
.
let bn = BigNum::from_u32(0x4543).unwrap();
let bn_vec = bn.to_vec_padded(4).unwrap();
assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
let r = bn.to_vec_padded(1);
assert!(r.is_err());
let bn = -BigNum::from_u32(0x4543).unwrap();
let bn_vec = bn.to_vec_padded(4).unwrap();
assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
This corresponds to BN_bn2binpad
.
sourcepub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack>
pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack>
Returns a decimal string representation of self
.
let s = -BigNum::from_u32(12345).unwrap();
assert_eq!(&**s.to_dec_str().unwrap(), "-12345");
This corresponds to BN_bn2dec
.
sourcepub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack>
pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack>
Returns a hexadecimal string representation of self
.
let s = -BigNum::from_u32(0x99ff).unwrap();
assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF");
This corresponds to BN_bn2hex
.
sourcepub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack>
pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack>
Returns an Asn1Integer
containing the value of self
.
This corresponds to BN_to_ASN1_INTEGER
.
sourcepub fn set_const_time(&mut self)
pub fn set_const_time(&mut self)
Force constant time computation on this value.
This corresponds to BN_set_flags
.
sourcepub fn is_const_time(&self) -> bool
pub fn is_const_time(&self) -> bool
Returns true if self
is in const time mode.
This corresponds to BN_get_flags
.
sourcepub fn is_secure(&self) -> bool
pub fn is_secure(&self) -> bool
Returns true if self
was created with BigNum::new_secure
.
This corresponds to BN_get_flags
.
Trait Implementations§
source§impl ForeignType for BigNum
impl ForeignType for BigNum
source§impl Ord for BigNum
impl Ord for BigNum
source§impl PartialEq<BigNum> for BigNum
impl PartialEq<BigNum> for BigNum
source§impl PartialEq<BigNum> for BigNumRef
impl PartialEq<BigNum> for BigNumRef
source§impl PartialEq<BigNumRef> for BigNum
impl PartialEq<BigNumRef> for BigNum
source§impl PartialOrd<BigNum> for BigNum
impl PartialOrd<BigNum> for BigNum
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<BigNum> for BigNumRef
impl PartialOrd<BigNum> for BigNumRef
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<BigNumRef> for BigNum
impl PartialOrd<BigNumRef> for BigNum
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read more